Stoichiometry of the degradation of dissolved and particulate biogenic organic matter in the NW Iberian upwelling

نویسندگان

  • X. A. Álvarez-Salgado
  • M. Nieto-Cid
  • J. Gago
  • S. Brea
  • C. G. Castro
  • M. D. Doval
  • F. F. Pérez
چکیده

[1] The average composition of the dissolved and particulate products of early degradation of marine phytoplankton has been established for the first time in a coastal upwelling system using a mixing analysis along isopycnal surfaces combined with a stoichiometric model. About 17–18% of the mineralized organic matter is derived from the decomposition of organic particulates, and 16–35% is from the dissolved organic matter. The remaining 50–70% is derived probably from large fast sinking particles. On average, the mineralized material on large particles has the closest composition to the Redfield formula. The ratio of dissolved saccharides to dissolved organic matter respiration is >40% higher than expected from a material of Redfield composition. Finally, the ratio of lipid to particulate organic matter respiration is >80% larger than expected from a material of Redfield composition. Regarding the decomposition of hard structures, biogenic silica dissolves predominantly in the inner shelf, where organic carbon oxidation is more intense, and diatom deposition occurs preferentially.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Off-shelf fluxes of labile materials by an upwelling filament in the NW Iberian Upwelling System

Daily changes in the concentrations of carbon and nitrogen species were monitored during the course of a Lagrangian drifter experiment in a recurrent upwelling filament south of Cape Finisterre (NW Iberian Upwelling System). A drifting buoy released at the southern edge of the upwelling centre generated by the Cape moved 60km southwestwards from 3 to 7 August 1998. Organic matter in the 50m dee...

متن کامل

A study on the composition of size-fractionated suspended particulate matter in shallow coastal waters of Chabahar Bay

Abstract In the present study, sampling and analysis of size-fractionated suspended particulate matter (SPM) in coastal waters of Chabahar Bay have been done for the first time. Sampling has been conducted on December 25 of 2018 from 5 stations in different locations of the Bay in order to evaluate the effects of natural and human activities on SPM mass and composition. With an overall average...

متن کامل

Production, partitioning and stoichiometry of organic matter under variable nutrient supply during mesocosm experiments in the tropical Pacific and Atlantic Ocean

Oxygen-deficient waters in the ocean, generally referred to as oxygen minimum zones (OMZ), are expected to expand as a consequence of global climate change. Poor oxygenation is promoting microbial loss of inorganic nitrogen (N) and increasing release of sediment-bound phosphate (P) into the water column. These intermediate water masses, nutrient-loaded but with an N deficit relative to the cano...

متن کامل

Response of bacteria to simulated upwelling phytoplankton blooms

Until recently, studies of the fate of primary production in coastal upwelling systems have focused mainly on export through sinking of particulate organic matter (POM). In week-long deck incubations conducted during the upwelling season off Oregon, a large accumulation of carbonrich (C:N ≥ 16) dissolved organic matter (DOM) occurred following nitrate depletion by diatom blooms. The response of...

متن کامل

Production and partitioning of organic matter during simulated phytoplankton blooms

Few studies have examined the partitioning of organic matter in upwelling systems, despite the fact that these systems play a key role in carbon and nitrogen budgets in the ocean. We examined the production and partitioning of phytoplankton-derived organic matter in deck incubations off Oregon during the upwelling season. During exponential growth of the phytoplankton, $78% of total accumulated...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006